
JOURNAL OF APPLIED POLYMER SCIENCE VOL. 18, PP. 193-202 (1974) 

Estimation of Long-Chain Branching in 
Ethylene-Propylene Terpolymers from 
Infinite-Dilution Viscoelastic Properties 

YUTAKA MITSUDA, JOHN L. SCHRAG, and JOHN D. FERRY, 
Department of Chemistry and Rheology Research Center, University 

of Wisconsin, Madison, Wisconsin 53706 

Synopsis 
A method is outlined for estimation of small degrees of long-chain branching in poly- 

mers with moderately narrow molecular weight distribution (BW/B,, < 1.4). The 
storage and loss shear moduli, G' and G", are measured in dilute solution by the Birn- 
boim-Schrag multiple-lumped resonator and extrapolated to infinite dilution, choosing a 
suitable solvent viscosity and frequency range such that the data lie in the terminal zone 
where G' and G" are proportional to the second and first powers of frequency, respec- 
tively. The intrinsic reduced steady-state shear compliance is determined from these 
data and corrected for moderate molecular weight heterogeneity (assuming a Gaussian 
distribution) from knowledge of MW/B,, and the Mark-Houwink exponent a. The re- 
sulting value of S2/S12 (where SI = Z T ~ / T I ,  S1 = Z ( T , , / T I ) ~ ,  the T='S being the relaxation 
times and 7 1  the longest one) is compared with values calculated by the Zimm-Kilb 
theory as evaluated by Osaki for comb polymers of regular geometry and different num- 
bers of branch points. The method has been illustrated by measurements on four 
ethylene-propylene copolymers. One containing no termonomer and one containing a 
saturated termonomer appeared to be linear ; two containing unsaturated termonomers 
showed small degrees of branching. The method appears to  be promising for detecting 
from one to  four branch points per molecule. 

INTRODUCTION 

The presence of long-chain branching profoundly affects the physical prop- 
erties and technological processing of amorphous polymers, although the 
nature of the effects has not yet been clearly el~cidated. '-~ Interpretation 
of the role of branching is hampered by the difficulty of knowing whether 
small extents of branching exist in a given polymer sample unless it has 
been synthesized in a specific manner to  produce a controlled branch ge- 
ometry. The radius of gyration and intrinsic viscosity are, of course, 
diminished by the presence of bran~hing,s>~ but for small numbers of branch 
points per molecule the changes are not large. 

The dynamic viscoelastic properties at infinite dilution, at frequencies 
near and below the reciprocal of the longest relaxation time, are more 
sensitive to  branching; specifically, the storage modulus of a branched 
polymer is considerably smaller than that of a linear polymer in this fre- 
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quency  range.'^^ We have suggested that this feature could be applied to 
detect and gauge branching,8 pointing out that molecular weight distribu- 
tion must be taken into account since it also affects the storage modulus in 
the opposite d i r e~ t ion .~  We now outline a method for estimating small 
degrees of random branching from dilute-solution viscoelastic measure- 
ments, including a correction for moderate degrees of molecular weight 
heterogeneity. The method is illustrated by measurements on a series of 
ethylene-propylerie terpolymers. 

THEORY 

Determination of the Reduced Intrinsic Steady-State Compliance 
The intrinsic shear storage and loss moduli [G’] and [G”] are obtained 

by extrapolating the ratios G’/c and (G” - w q s ) / c  to zero concentration, 
where G’ and G” are the storage and loss moduli measured in small oscil- 
lating deformations, w is the radian frequency, qs is the solvent viscosity, 
and c is the polymer concentration in g/cc. At low frequencies, all molec- 
ular theories predict that [G’ ] and [GI’ ] are proportional, respectively, to  
the second and first powers of w)  as followslO: 

[G’l = [ A  Iw’ ( M / R T ) ( [ V I V ~ ) ~ ~ O ~ R W ~  (1) 
[G”I = h l r l s w  (2) 

where M is the molecular weight (uniform in this case), [q] is the intrinsic 
viscosity, andjOeR is the reduced intrinsic steady-state compliance, 

j o e R  = (RT/M[q]’)  lim J,O/c 
C-PO 

(3) 

where J,O is the steady-state shear compliance (in principle measurable 
from a shear creep experiment). 

The dimensionless quantity j O e R ,  which is sensitive to  both branching and 
molecular weight heterogeneity, is the basis of our present analysis. It is 
determined from experimental data as follows. In  a conventional graphic 
method for comparing experimental viscoelastic data with the predictions 
of theory, 8911-13 the reduced intrinsic moduli [G’IR = [G’]M/RT and 
[G”]R  = [G”]M/RT are plotted logarithmically against a reduced (dimen- 
sionless) frequency wqS [ v ] M / R T .  At low frequencies, for [G”IR, the 
ordinate and abscissa are identical; the log [G’IR line with a slope of 2 
intersects the ordinate axis ( w q s [ ~ ] M / R T  = 1) at a point readily apparent 
from eq. (1) to  be logjoeR. 

In  the theory of ZimmI4 for dilute-solution viscoelastic behavior of linear 
molecules and that of Zimm and Kilb15 for branched molecules, which are 
based on the well-known bead-spring model, when the molecular weight is 
uniform, 

where S1 = Z ! T ~ / T ~  and S, = Z ! ( T , , / T ~ ) ~ ,  rP being the various relaxation 
times introduced in the theory and r1 the longest relaxation time. (The 

j o e R  = s2/Sl2 (4) 
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summations take into account degeneracy in certain case8 where necessary; 
the definitions of S2 and S1 hold only if the modulus contributions as- 
sociated with all the relaxation times are identical,16 but that is the case for 
the theories applied here. An additional subscript 0 sometimes applied to  
the T’S to  denote infinite dilution has been omitted.) If the molecular 
weight distribution is not uniform, a heterogeneity correction must be 
applied as described below. 

Estimation of S2/S1z for Randomly Branched Polymers 
From the bead-spring theories,14*15 the entire frequency dependence 

(exclusive of very high frequencies) of [G’IR and [G”IR can be calculated as  
functions of the number of beads in the molecular model and a hydro- 
dynamic interaction parameter h* which may be regarded roughly as a 
measure of the ratio of bead size to  interbead distance. We restrict the 
consideration to  the single parameter S2/S12, however, which is the feature 
most sensitive to  branching. The number of beads should be taken as 
large as possible because the model is then most realistic and the results are 
least dependent on the arbitrary number chosen. For linear polymers, 
numerical evaluations have been made by Lodge and Wu”; for star- 
shaped branched polymers, by Osaki and Schrag18; and for comb-shaped 
polymers with certain geometries, by Osaki et al.19 

However, for 
small numbers of branch points, f 5 5 ,  we assume that a regular comb, in 
which the lengths of the branches and their spacings along the backbone are 
all equal, is a reasonably appropriate model; an example is shown in Figure 
1 with beads on branches (Nb) and backbone beads between and outside 
branches (N,) both equal to 12; here f = 3. Unfortunately, present 
computer limitations restrict the Osaki numerical evaluations to a total 
bead count (N = fNh + df - l)Ns - 1) not greater than 111, except for the 
cases of f  = 1 (same as three-arm star18) and f = 0 (linear). With in- 
creasing Nb = N,, the calculated value of S2/S12 decreases and approaches 
an  asymptotic limit. Values calculated with a UNIVAC 1108 computer 
are plotted in Figure 2 against N ,  = N, for several values off. For f = 0 
and f = 1, the linear and star calculation methods permit use of large No, 

There have been no evaluations for random branching. 

+ - - - - - - - - -  

Fig, 1. Example of regular comb model withf = 3 and Na = N ,  = 12. 
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TABLE I 
Viscoelastic Coefficients for Regular Combs, Estimated for 

Large Nb with h* = 0.15 

I I I 

I hx0.15 

0.3-0\--- 0 - 

-2 ' \=_I<; - - - _ _  
\3 _ _ _  

4 - - 

1 I I I 

f = O  1 2 3 4 

SZ/SIZ 0.25 0.17 0.16 0.15 0.14 
9' 1.00 0.89 0.83 0.79 0.76 
g', random I .oo 0.94 0.90 0.86 0.83 

and essential convergence is achieved. For higher f,  only a rough guess is 
possible for the asymptotic values of S2/SI2, as indicated by dashed lines in 
the figure and listed in Table I. They should be adequate, however, to 
identify small degrees of branching; in any case, there is a 1arge.difference 
between f = 0 and f = 1. For f higher than 5 ,  the theory is probably un- 
sati~factory. '~ In these calculations, it is necessary to choose a value of 
h*; 0.15 corresponds to a moderately good solvent, selected here because 
for practical purposes good solvents are easier to find than theta solvents 
and they produce larger values of G' and G" a t  comparable polymer 
concentrations. 

An indication of the degree to which a randomly branched molecule can 
be simulated by a regular comb can be obtained by comparing the intrinsic 
viscosity ratio, g' = [ v ] ~ / [ v ] ~ ,  calculated for these two models. Here, 
the subscripts f and 1 refer respectively to a branched molecule with f 
branched points and a linear molecule with the same molecular weight 
(same total number of beads, N ) .  The value of g' for a regular comb is ob- 
tained as @ l / @ l ,  where the Flory coefficients 9, and al are calculated as 
described by Osaki for finite Nl9tz0; it is much less sensitive to N b  than is 
S2/SI2. The value of g' for a molecule with random trifunctional branches 
is calculated as proposed by Kurata and collaborators,21 their eq. (16)) 
based on the theory of Zimm and Stockmayer.22 These ratios, also listed 
in Table I, indicate that use of the regular comb model will underestimate 
somewhat the degree of branching, as might be expected. 
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Correction for Molecular Weight Heterogeneity 

Presence of molecular weight heterogeneity causes joeR to be larger than 
S2/S12. The problem of resolving simultaneous branching and molecular 
weight distribution has been treated by K r a ~ s , ~ ~  Ram,24 and K ~ r a t a ~ ~  in 
terms of combining intrinsic viscosity and gel permeation chromatography 
data. However, for one or two branches, the intrinsic viscosity is not so 
different from that of a linear molecule, as seen in Table I. In  this range, 
combination of joeR and GPC might be more useful. At present, we avoid 
the need for detailed GPC information by treating only the simple case 
where the molecular weight distribution is sufficiently narrow so that for a 
given branching index (probability of branching a t  any monomer residue) f 
is the same for all molecular species. Then S2/S12 is also uniform and the 
following relation can be derived : 

j o e R  = K h S 2 / S 1 2  (5 )  
where Kh is a heterogeneity coefficient. It is now necessary to specify that 
joeR is determined graphically as described above with ill replaced by the 
number-average molecular weight in plotting [G']M/&T against w t s  [q]M/ 
RT. 

For the ethylene-propylene terpolymers used in the experimental part 
of this study, the molecular weight distribution is relatively narrow26 and 
is expressed by a Gaussian approximation, following the relations : 

(The choice of average is arbitrary but must be specified.) 

d u ! ( ~ ) / d  InM = (l/m&) exp(--y2) (6) 

Y = (l/m) ln(M/MO). (7) 
The parameters m and Mo are related to the averages W, and Zw by trhe 
equations 

Mo = AT, exp[(m/2)2]. (9) 
At infinite dilution, the intrinsic viscosity and the quantity [ A ]  defined 
in eq. (1) can be shown to be 

where [ A  I M  and [vIM are functions of molecular weight defined by 

[ A I M  = ( M / R T )  (b?IMd2 (S2/S12) (12) 

[ ? I M  = KIM". (13) 

(14) 

Combination of eqs. (1) and (5 )  to (13) leads to the rather simple expression 

Kh = ( M w / a n ) ( "  + 1)2. 
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If J!fm/iVn is available and the exponent a can be estimated, the hetero- 
geneity coefficient in eq. (5) can be easily calculated. The drrivation is 
given in more detail elsewhere27 for Gaussian and other forms of distribu- 
tion; the value of Kh is not very sensitive to the form of the distribution if 
M,/Rn is below 1.5. 

EXPERIMENTAL 

Materials 

Four experimental ethylene-propylene copolymers were generously 
furnished by Drs. Wendell V. Smith and Ben Ehrlich of Uniroyal, Inc. 
One contained ethylene and propylene only; the others, small amounts of 
different termonomers. Their compositions and other characterization 
data are given in Table 11. It was expected that samples A and B would be 
linear, since they contained no termonomer and a termonomer with a satur- 
ated residue respectively, whereas for samples C and D the possibility of 
branching existed. The number-average molecular weights were quoted 
by Dr. Ehrlich; the intrinsic viscosities n-ere measured in our laboratory 
both by conventional capillary viscomctry and in the course of the visco- 
elastic measurements by multiple-lumped resonator (MLR), and the two 
methods were in quite good agreement. 

To provide a good solvent with suitable viscosity and low volatility, it 
was found necessary to  compose a ternary mixture of 46.2% Tetralin 
(practical, Aldrich), 28.4% 0-terphenyl (practical, Eastman), and 25.4% 
white oil (heavy grade, American Oil Company). The viscosity (q8)  was 
0.0784 poise a t  25.00' and 0.0523 poise a t  37.78"; the density ( p )  was 
0.9658 and 0.9564 a t  these respective temperatures. Solutions were made 
up by weight with very gentle stirring a t  room temperature, and the poly- 
mer concentration (c) in g/ml was calculated assuming additivity of 
volumes. A very small amount of gel, estimated to be much less than 1% 
of the polymer, was filtered from solutions of samples C and D. The most 
concentrated solution was measured first and then sequentially diluted to 

TABLE I1 
Characterization of Ethylene-Propylene Copolymers 

Sample code 

Termonomer 

Moles termonomer/g, X lo3 
Ethylene/Propylene weight 

D,, (osmotic) x 10-6 

am/%,, (GPC) 
[q] in ternary solvent, 

[q] in ternary solvent, MLR 

ratio 

capillary, ml/g 

A 

none 

0 

50/50 
2.33 
1.29 

170 
160 

B 

ethyl 
norbornene 
0.5 

50/50 
2.29 
1.19 

162 
155 

C D 

ethylidene 
norbornene 
0.5 

dicyclo- 
pen tadiene 
0.6 

50/50 
2.45 
1.25 

155 
150 

65/35 
2.70 
1.32 

161 
155 
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several lower concentrations, usually a total of five. 
range was 0.002 to 0.008 g/ml. 

The concentration 

Method 

The storage and loss shear moduli, G’ and G”, of the solutions were 
measured with the Birnboim-Schrag multiple-lumped resonator with com- 
puterized data acquisition and processing ~ y s t e m . ~ ~ ~ ~ ~  Only one resonator 
was used, with five working resonances from 100 to 6000 Hz. However, 
solutions of samples B and C were measured a t  two different temperatures 
to provide additional effective frequencies. 

RESULTS AND DISCUSSION 

The quantities (G’/c)”‘ and (GI’ - w v s ) / c  were plotted against c and 
extrapolated to zero c a t  each frequency as described in previous s t u d i e ~ ~ ~ ~  to 
give the corresponding intrinsic quantities [GI]  and [C”]; an example is 
shown in Figure 3 for sample D. Complete data are given e l se~here .~’  
The initial concentration dependences may be described by the ratios y’ 
and y” which are, respectively, the limiting values a t  low concentrations 
of the ratio (C’/c)-l d(G’/c)/dc and the corresponding expression with G” 
- wvS substituted for GI. These ratios decreased with increasing fre- 
quency as usually o b s e r ~ e d . ~ , ~  At low frequencies, the ratio y = y’/ y ”  
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Fig. 4. Logarithmic plots of [G’]R and [G”]a against wvJq]@,,/RT for four samples &s 

identified. Crosses denote intersections which specify log jOC,. 

appeared to approach a value somewhat above 4, which is consistent with 
the prediction y = 2SI/S2 based on the assumption that the longest relaxa- 
tion time is the most concentration dependent. 

The extrapolated values [G’l and [G”] were reduced to [G’IR = [G’I- 
XJRT and [G”IR = [ G “ ] X , / R T  and then plotted logarithmically 
against q S [ r ] ] i F n / R T  in Figure 4. The choice of solvent viscosity is such 
as to place the data in the terminal zone where the parameter joeR can be 
determined by the graphical procedure described above. It is evident that 
.iOeR is smaller for samples C and D, as expected if a small degree of branch- 
ing is present. For more nearly quantitative interpretation, however, it 
is necessary to apply the heterogeneity correction Kh which can be obtained 
from eq. (5 )  and the data in Table 11; then S,/SI~ = j ‘ eR /Kn.  In  this 
calculation, it is assumed that the Mark-Houwink exponent a is 0.60 for 
both linear and branched polymers in this moderately good solvent. 
Although it should be somewhat smaller with branching, the results are 
not very sensitive to the choice. The results are listed in Table 111, to- 
gether with the branch numbers f deduced by comparison with Table I. 

According to this analysis, samples A and B are linear; samples C and D 
have at least three or four branch points per molecule. In spite of the 
necessity for guessing the values of h* = 0.15 and a = 0.60 in the calcula- 
tions, and the asymptotic extrapolations in Figure 2,  the relative degrees of 
branching are probably reliable. In principle, this method should provide 
a sensitive means of detecting from one to three branches per molecule in 
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TABLE I11 
Experimental Sz/S12 and Estimates of Branch Points 

Sample 
code jO*R Kh SZ/SlZ f 

A 0.40 1.92 0.21 0 
B 0.40 1.56 0.26 0 
C 0.22 1.77 0.124 >4 
D 0.28 2.04 0.14 4 

samples whose molecular weight distributions are not too broad. Half a 
gram of sample is sufficient. For higher branching degrees, the method is 
insensitive to f and the present theory is probably not reliable; the method 
of KurataZ5 combining GPC and intrinsic viscosity then becomes preferable. 

This work was supported in part by the Army Research Office (Durham), the National 
Institutes of Health, and the National Science Foundation. Preliminary calculations 
of the effect of molecular weight distribution were supported by the ARPA Materials 
Research Council Contract No. DAHC 15-71-C-0253 with the University of Michigan. 
We are indebted to Drs. W. V. Smith and B. Ehrlich for the samples and for discussions of 
formulating the molecular weight heterogeneity. 
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